

PE-HD EXTRUDIDO (E)/PRENSADO (P)

Plástico semi-cristalino, fisiologicamente inerte, associa uma boa combinação de rigidez, tenacidade e resiliência. Possui uma boa resistência química e pode ser facilmente soldado. O PE-HD é um polietileno versátil usado essencialmente na indústria alimentar, assim como nas indústrias química, mecânica e elétrica. Este material pode ser obtido por extrusão (E) ou por prensagem (P). Sugere-se o uso de polietileno prensado em peças maquinadas e em todas as aplicações com necessidade de uma melhor estabilidade dimensional. Distinguem-se facilmente pela sua superfície, no caso do PE-HD/E, apresenta as faces diferentes (1 baça e 1 brilhante). No caso do PE-HD/P, as faces são iguais com aspeto retificado.

- Boa resistência química, ao desgaste e à abrasão
- Boa resistência ao impacto, inclusive a baixas temperaturas
- Baixa absorção de água
- Resistência mecânica e à deformação moderada
- Muito boas propriedades dielétricas e bom isolamento elétrico (exceptuando as qualidades dissipadoras estáticas)
- Fácil maquinação
- Fisiologicamente inerte, possibilita contacto com alimentos
- Boa resistência a altas radiações de energia (Gama e Raios-X)
- Não é auto-extinguível

APLICAÇÕES

- Placas de corte para mesas de trabalho da indústria alimentar
- Elementos para drenagem de água
- Partes de bombas em contacto com produtos agressivos
- Todo o tipo de aplicações mecânicas, químicas e elétricas

PROPRIEDADES DESLIZANTES

RESISTENCIA AO IMPACTO

FICHA TÉCNICA

PROPRIEDADES	MÉTODOS DE TESTE	UNIDADES	PE-HD
COR		-	BRANCO/PRETO VERDE/OUTRA
DENSIDADE	ISO 1183-1	g/cm³	0.96
PESO MOLECULAR	-	10 ⁶ g/mol	0.5
ABSORÇÃO DE ÁGUA A 23°C ATÉ À SATURAÇÃO¹	_	%	<0.1
TEMPERATURA DE FUSÃO (DSC, 10°C/MIN)	ISO 11357-1/-3	°C	135
CONDUTIVIDADE TÉRMICA A 23°C	-	W/(K.m)	0.40
COEFICIENTE DE EXPANSÃO TÉRMICA LINEAR			
ENTRE 23-100°C	-	M/(m.K)	150 x 10 ⁻⁶
TEMPERATURA MÁXIMA DE SERVIÇO NO AR			
PARA CURTOS PERÍODOS³	-	°C	120
CONTINUAMENTE: PARA 20.000H4		۰С	80
TEMPERATURA MÍNIMA DE SERVIÇO⁵	_	°C	-100
TEMPERATURA DE DEFORMAÇÃO SOB CARGA			
MÉTODO A: 1.8 MPa	ISO 75-1/-2	°C	44
TEMPERATURA DE AMOLECIMENTO VICAT - VST/B50	ISO 306	°C	80
INFLAMABILIDADE ⁶			
"ÍNDICE DE OXIGÉNIO"	ISO 4589-1/-2	%	<20
DE ACORDO COM UL94 (6MM DE ESPESSURA)	-	-	НВ
TESTE À TRAÇÃO ⁸			
RESISTÊNCIA À TRAÇÃO ⁹	ISO 527-1/-2	MPa	28
RESISTÊNCIA À TRAÇÃO NA RUTURA	ISO 527-1/-2	%	>50
MÓDULO DE ELASTICIDADE ¹⁰	ISO 527-1/-2	MPa	1300
TESTE DE COMPRESSÃO ¹¹			
RESISTÊNCIA A 1/2/5% DE DEFORMAÇÃO NOMINAL ¹⁰	ISO 604	MPa	12/18.5/26
RESISTÊNCIA AO IMPACTO DE CHARPY SEM ENTALHE ¹²	ISO 179-1/1eU	KJ/m ²	s/ FRATUR
RESISTÊNCIA AO IMPACTO DE CHARPY COM ENTALHE	ISO 179-1/1eA	KJ/m²	105P
RESISTÊNCIA AO IMPACTO DE CHARPY COM ENTALHE DUPLO DE 14º13	ISO 11542-2	KJ/m²	25
DUREZA POR BOLA DE AÇO ¹⁴	ISO 2039-1	N/mm²	48
DUREZA SHORE D (15 S) ¹⁴	ISO 868	_	62
PROPRIEDADES ELECTRICAS A 23°C			
RIGIDEZ ELÉCTRICA ¹⁵	IEC 60243-1	kV/mm	45
RESISTIVIDADE VOLUMÉTRICA	IEC 60093	Ohm.cm	> 1014
RESISTIVIDADE SUPERFICIAL	IEC 60093	Ohm	> 1012
PERMEABILIDADE RELATIVA ε, : A 100HZ	IEC 60250	-	2.4
A 1MHZ	IEC 60250	-	2.4
FATOR DE DISSIPAÇÃO DIELÉCTRICA TAN δ : A 100HZ	IEC 60250	-	0.0002
A 1MHZ	IEC 60250		0.0002
ÍNDICE DE SEGUIMENTO COMPARATIVO (CTI)	IEC 60112		600

NOTA: $1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3$; $1 \text{ MPa} = 1 \text{ N/mm}^2$; 1 KV/mm = 1 MV/m

(1) Medido em provetes de 1 mm. (2) Os números indicados nestas propriedades são, na maior parte, derivados de dados de fornecedores de matérias-primas. (3) Apenas para períodos de curta exposição (poucas horas) em aplicações onde apenas pouco ou nenhum peso é aplicado ao material. (4) Temperatura a que resiste durante um período mínimo de 20.000 horas. Após este período de tempo, há um decréscimo cerca de 50% na resistência à tracção, comparado com o valor original. Os valores da temperatura dados, são baseados na degradação por oxidação térmica que ocorre que provoca uma redução das propriedades. No entretanto, a temperatura máxima de serviço permissível depende, em muitos casos, essencialmente da dedução e da magnitude dos esforços mecânicos a que o material é sujeito. (5) Dado que a resistência ao impacto diminui com a diminuição da temperatura, a temperatura mínima de serviço permitida é determinado pela extensão de impacto ao qual o material é sujeito. Os valores dados são baseados em condições de impacto desfavoráveis e não podem consequentemente ser considerados como sendo os limites absolutos. (6) Estas avaliações derivam das especificações técnicas dos fabricantes das matérias-primas, não permitindo determinar o comportamento dos materiais sob condições de fogo. (7) A maioria das figuras dadas pelas propriedades mecânicas dos materiais extrudidos, são valores médios dos testes feitos a placas com 30 mm de espessura. (8) Teste a provetes: tipo 1B. (9) Teste de velocidade: 50 mm/min. (10) Teste de velocidade: 1 mm/min. (11) Teste a provetes: cilindros ø 8x16 mm. (12) Pêndulo usado: 15J. (13) Pêndulo usado: 25J. (14) Medido em provetes de 10 mm de espessura. (15) Configuração de eletrodos: cilindros ø 25/75mm coaxiais; no óleo de transformador de acordo com IEC 60296; Amostras teste de 1 mm de espessura.